Search results
Results from the WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
where R 2 is the coefficient of determination and VAR err and VAR tot are the variance of the residuals and the sample variance of the dependent variable. SS err (the sum of squared predictions errors, equivalently the residual sum of squares ), SS tot (the total sum of squares ), and SS reg (the sum of squares of the regression, equivalently ...
For a set of numbers {10, 15, 30, 45, 57, 52 63, 72, 81, 93, 102, 105}, if this set is the whole data population for some measurement, then variance is the population variance 932.743 as the sum of the squared deviations about the mean of this set, divided by 12 as the number of the set members.
In statistics, explained variation measures the proportion to which a mathematical model accounts for the variation of a given data set.Often, variation is quantified as variance; then, the more specific term explained variance can be used.
Variance analysis can be carried out for both costs and revenues. Variance analysis is usually associated with explaining the difference (or variance) between actual costs and the standard costs allowed for the good output. For example, the difference in materials costs can be divided into a materials price variance and a materials usage variance.
which is an unbiased estimator of the variance of the mean in terms of the observed sample variance and known quantities. If the autocorrelations are identically zero, this expression reduces to the well-known result for the variance of the mean for independent data. The effect of the expectation operator in these expressions is that the ...
For example, the costs of heating and cooling a factory in Illinois will be highest in the winter and summer months and lowest in the spring and fall. If the overhead rate is recomputed at the end of each month or each quarter based on actual costs and activity, the overhead rate would go up in the winter and summer and down in the spring and ...