Search results
Results from the WOW.Com Content Network
Knowledge acquisition is the process used to define the rules and ontologies required for a knowledge-based system. The phrase was first used in conjunction with expert systems to describe the initial tasks associated with developing an expert system, namely finding and interviewing domain experts and capturing their knowledge via rules ...
The software specialist modules, which are called knowledge sources (KSs). Like the human experts at a blackboard, each knowledge source provides specific expertise needed by the application. The blackboard, a shared repository of problems, partial solutions, suggestions, and contributed information. The blackboard can be thought of as a ...
An expert system is an example of a knowledge-based system. Expert systems were the first commercial systems to use a knowledge-based architecture. In general view, an expert system includes the following components: a knowledge base, an inference engine, an explanation facility, a knowledge acquisition facility, and a user interface. [48] [49]
Ripple-down rules consist of a data structure and knowledge acquisition scenarios. Human experts' knowledge is stored in the data structure. The knowledge is coded as a set of rules. The process of transferring human experts' knowledge to Knowledge-based systems in RDR is explained in knowledge acquisition scenario.
Knowledge representation and reasoning (KRR, KR&R, or KR²) is a field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks, such as diagnosing a medical condition or having a natural-language dialog.
A trivial example of how this rule would be used in an inference engine is as follows. In forward chaining, the inference engine would find any facts in the knowledge base that matched Human(x) and for each fact it found would add the new information Mortal(x) to the knowledge base. So if it found an object called Socrates that was human it ...
Inductive logic programming has adopted several different learning settings, the most common of which are learning from entailment and learning from interpretations. [16] In both cases, the input is provided in the form of background knowledge B, a logical theory (commonly in the form of clauses used in logic programming), as well as positive and negative examples, denoted + and respectively.
The final issue with using conventional methods to develop expert systems was the need for knowledge acquisition. Knowledge acquisition refers to the process of gathering expert knowledge and capturing it in the form of rules and ontologies. Knowledge acquisition has special requirements beyond the conventional specification process used to ...