enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-ionization of water - Wikipedia

    en.wikipedia.org/wiki/Self-ionization_of_water

    The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.

  3. Dissociation (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Dissociation_(chemistry)

    It is usually indicated by the Greek symbol α. More accurately, degree of dissociation refers to the amount of solute dissociated into ions or radicals per mole. In case of very strong acids and bases, degree of dissociation will be close to 1. Less powerful acids and bases will have lesser degree of dissociation.

  4. Aqueous solution - Wikipedia

    en.wikipedia.org/wiki/Aqueous_solution

    Acids and bases are aqueous solutions, as part of their Arrhenius definitions. [1] An example of an Arrhenius acid is hydrogen chloride (HCl) because of its dissociation of the hydrogen ion when dissolved in water. Sodium hydroxide (NaOH) is an Arrhenius base because it dissociates the hydroxide ion when it is dissolved in water. [3]

  5. Acid dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Acid_dissociation_constant

    The hydroxide ion OH −, a well known base, is here acting as the conjugate base of the acid water. Acids and bases are thus regarded simply as donors and acceptors of protons respectively. A broader definition of acid dissociation includes hydrolysis, in which protons are produced by the splitting of water molecules.

  6. Leveling effect - Wikipedia

    en.wikipedia.org/wiki/Leveling_effect

    When a strong acid is dissolved in water, it reacts with it to form hydronium ion (H 3 O +). [2] An example of this would be the following reaction, where "HA" is the strong acid: HA + H 2 O → A − + H 3 O + Any acid that is stronger than H 3 O + reacts with H 2 O to form H 3 O +. Therefore, no acid stronger than H 3 O + exists in H 2 O.

  7. Metal ions in aqueous solution - Wikipedia

    en.wikipedia.org/wiki/Metal_ions_in_aqueous_solution

    The strength of the bonds between the metal ion and water molecules in the primary solvation shell increases with the electrical charge, z, on the metal ion and decreases as its ionic radius, r, increases. Aqua ions are subject to hydrolysis. The logarithm of the first hydrolysis constant is proportional to z 2 /r for most aqua ions.

  8. Organic acid - Wikipedia

    en.wikipedia.org/wiki/Organic_acid

    In general, organic acids are weak acids and do not dissociate completely in water, whereas the strong mineral acids do. Lower molecular mass organic acids such as formic and lactic acids are miscible in water, but higher molecular mass organic acids, such as benzoic acid , are insoluble in molecular (neutral) form.

  9. Solubility chart - Wikipedia

    en.wikipedia.org/wiki/Solubility_chart

    The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.