Search results
Results from the WOW.Com Content Network
These conditions are used when we don’t know the exact details of flow distribution but boundary values of pressure are known For example: external flows around objects, internal flows with multiple outlets, buoyancy-driven flows, free surface flows, etc. The pressure corrections are taken zero at the nodes.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.
Assume that the flow is steady, two-dimensional, and fully developed (i.e., the velocity profile does not change along the streamwise direction). [45] Note that this widely-used fully-developed assumption can be inadequate in some instances, such as some compressible, microchannel flows, in which case it can be supplanted by a locally fully ...
The flow is axisymmetric ( ∂... / ∂θ = 0). The flow is fully developed ( ∂u x / ∂x = 0). Here however, this can be proved via mass conservation, and the above assumptions. Then the angular equation in the momentum equations and the continuity equation are identically satisfied.
For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [ 13 ] [ 14 ] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe.
The Boussinesq hypothesis – although not explicitly stated by Boussinesq at the time – effectively consists of the assumption that the Reynolds stress tensor is aligned with the strain tensor of the mean flow (i.e.: that the shear stresses due to turbulence act in the same direction as the shear stresses produced by the averaged flow).
Next, the flow follows the Fanno line until a shock changes the flow from supersonic to subsonic. The flow then follows the Fanno line again, almost reaching a choked condition before exiting the duct. Figure 5 Fanno and Rayleigh Line Intersection Chart. The Fanno flow model is often used in the design and analysis of nozzles.