enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    Critical isotherm for Redlich-Kwong model in comparison to van-der-Waals model and ideal gas (with V 0 =RT c /p c) The Redlich–Kwong equation is another two-parameter equation that is used to model real gases. It is almost always more accurate than the van der Waals equation, and often more accurate than some equations with more than two ...

  3. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    The van der Waals equation is a mathematical formula that describes the behavior of real gases. It is named after Dutch physicist Johannes Diderik van der Waals . It is an equation of state that relates the pressure , temperature , and molar volume in a fluid .

  4. Perfect gas - Wikipedia

    en.wikipedia.org/wiki/Perfect_gas

    All perfect gas models are ideal gas models in the sense that they all follow the ideal gas equation of state. However, the idea of a perfect gas model is often invoked as a combination of the ideal gas equation of state with specific additional assumptions regarding the variation (or nonvariation) of the heat capacity with temperature.

  5. Boyle temperature - Wikipedia

    en.wikipedia.org/wiki/Boyle_temperature

    This is the virial equation of state and describes a real gas. Since higher order virial coefficients are generally much smaller than the second coefficient, the gas tends to behave as an ideal gas over a wider range of pressures when the temperature reaches the Boyle temperature (or when c = 1 V m {\textstyle c={\frac {1}{V_{m}}}} or P ...

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    The ideal gas law is the equation of state for an ideal gas, given by: = where P is the pressure; V is the volume; n is the amount of substance of the gas (in moles) T is the absolute temperature; R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature.

  8. Amagat's law - Wikipedia

    en.wikipedia.org/wiki/Amagat's_law

    Their predictions are the same for ideal gases. However, for real (non-ideal) gases, the results differ. [3] Dalton's law of partial pressures assumes that the gases in the mixture are non-interacting (with each other) and each gas independently applies its own pressure, the sum of which is the total pressure.

  9. Maxwell construction - Wikipedia

    en.wikipedia.org/wiki/Maxwell_construction

    Note from these that (/) (/) =; the van der Waals saturated vapor is an ideal gas in this limit. To paraphrase Sommerfeld, it is remarkable that the theory due to van der Waals is able to predict that when s g − s f ≫ 2 R {\displaystyle s_{g}-s_{f}\gg 2R} the saturated vapor behaves like an ideal gas; the saturated vapor of real gases ...