enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    Critical isotherm for Redlich-Kwong model in comparison to van-der-Waals model and ideal gas (with V 0 =RT c /p c) The Redlich–Kwong equation is another two-parameter equation that is used to model real gases. It is almost always more accurate than the van der Waals equation, and often more accurate than some equations with more than two ...

  3. Perfect gas - Wikipedia

    en.wikipedia.org/wiki/Perfect_gas

    All perfect gas models are ideal gas models in the sense that they all follow the ideal gas equation of state. However, the idea of a perfect gas model is often invoked as a combination of the ideal gas equation of state with specific additional assumptions regarding the variation (or nonvariation) of the heat capacity with temperature.

  4. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  5. Gas laws - Wikipedia

    en.wikipedia.org/wiki/Gas_laws

    The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.

  6. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    The van der Waals equation is a mathematical formula that describes the behavior of real gases. It is named after Dutch physicist Johannes Diderik van der Waals . It is an equation of state that relates the pressure , temperature , and molar volume in a fluid .

  7. Boyle temperature - Wikipedia

    en.wikipedia.org/wiki/Boyle_temperature

    This is the virial equation of state and describes a real gas. Since higher order virial coefficients are generally much smaller than the second coefficient, the gas tends to behave as an ideal gas over a wider range of pressures when the temperature reaches the Boyle temperature (or when c = 1 V m {\textstyle c={\frac {1}{V_{m}}}} or P ...

  8. Fugacity - Wikipedia

    en.wikipedia.org/wiki/Fugacity

    For an ideal gas, fugacity and pressure are equal, and so φ = 1. Taken at the same temperature and pressure, the difference between the molar Gibbs free energies of a real gas and the corresponding ideal gas is equal to RT ln φ. The fugacity is closely related to the thermodynamic activity. For a gas, the activity is simply the fugacity ...

  9. Virial expansion - Wikipedia

    en.wikipedia.org/wiki/Virial_expansion

    The cubic virial equation of state at is: = (+ +) It can be rearranged as: (+ +) = The factor / is the volume of saturated gas according to the ideal gas law, and can be given a unique name : = In the saturation region, the cubic equation has three roots, and can be written alternatively as: () = which can be expanded as: (+ +) + (+ +) = is a ...