enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]

  3. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.

  4. Aperiodic graph - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_graph

    In a strongly connected graph, if one defines a Markov chain on the vertices, in which the probability of transitioning from v to w is nonzero if and only if there is an edge from v to w, then this chain is aperiodic if and only if the graph is aperiodic. A Markov chain in which all states are recurrent has a strongly connected state transition ...

  5. Markov chain mixing time - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_mixing_time

    In probability theory, the mixing time of a Markov chain is the time until the Markov chain is "close" to its steady state distribution.. More precisely, a fundamental result about Markov chains is that a finite state irreducible aperiodic chain has a unique stationary distribution π and, regardless of the initial state, the time-t distribution of the chain converges to π as t tends to infinity.

  6. Kolmogorov's criterion - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_criterion

    Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,

  7. Coupling from the past - Wikipedia

    en.wikipedia.org/wiki/Coupling_from_the_past

    Consider a finite state irreducible aperiodic Markov chain with state space and (unique) stationary distribution (is a probability vector). Suppose that we come up with a probability distribution on the set of maps : with the property that for every fixed , its image () is distributed according to the transition probability of from state .

  8. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.

  9. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.