Search results
Results from the WOW.Com Content Network
Chromium(III) hydroxide is a gelatinous green inorganic compound with the chemical formula Cr(OH) 3. It is a polymer with an undefined structure and low solubility. It is amphoteric, dissolving in both strong alkalis and strong acids. [2] In alkali: Cr(OH) 3 + OH − → CrO − 2 + 2 H 2 O In acid: Cr(OH) 3 (OH 2) 3 + 3 H + → Cr(OH 2) 6 3+
Chromium compounds are compounds containing the element chromium (Cr). Chromium is a member of group 6 of the transition metals . The +3 and +6 states occur most commonly within chromium compounds, followed by +2; charges of +1, +4 and +5 for chromium are rare, but do nevertheless occasionally exist.
In acid solution the aquated Cr 3+ ion is produced. Cr 2 O 2− 7 + 14 H + + 6 e − → 2 Cr 3+ + 7 H 2 O ε 0 = 1.33 V. In alkaline solution chromium(III) hydroxide is produced. The redox potential shows that chromates are weaker oxidizing agent in alkaline solution than in acid solution. [6] CrO 2− 4 + 4 H 2 O + 3 e − → Cr(OH) 3 + 5 OH −
2 O + 3 e − → Cr(OH) 3 + 5 OH − (ε 0 = −0.13 V) Sodium chromate (Na 2 CrO 4) Chromium(VI) compounds in solution can be detected by adding an acidic hydrogen peroxide solution. The unstable dark blue chromium(VI) peroxide (CrO 5) is formed, which can be stabilized as an ether adduct CrO 5 ·OR 2. [21] Chromic acid has the hypothetical ...
Chromium(III) oxide – Cr 2 O 3; Chromium(IV) oxide – CrO 2; Chromium(VI) oxide – CrO 3; Cobalt(II) oxide – CoO; Copper(I) oxide – Cu 2 O; Copper(II) oxide – CuO; Curium(III) oxide – Cm 2 O 3; Curium(IV) oxide – CmO 2; Dysprosium(III) oxide – Dy 2 O 3; Erbium(III) oxide – Er 2 O 3; Europium(III) oxide – Eu 2 O 3; Oxygen ...
4 + Cr 2 O 3. The oxide is also formed by the decomposition of chromium salts such as chromium nitrate, or by the exothermic decomposition of ammonium dichromate. (NH 4) 2 Cr 2 O 7 → Cr 2 O 3 + N 2 + 4 H 2 O. The reaction has a low ignition temperature of less than 200 °C and is frequently used in “volcano” demonstrations. [8]
Chromium trioxide decomposes above 197 °C, liberating oxygen and eventually giving Cr 2 O 3: 4 CrO 3 → 2 Cr 2 O 3 + 3 O 2. It is used in organic synthesis as an oxidant, often as a solution in acetic acid, [9] or acetone in the case of the Jones oxidation. In these oxidations, the Cr(VI) converts primary alcohols to the corresponding ...
[3] Aqueous chromium(VI) oxide peroxide decomposes in a few seconds, turning green as chromium(III) compounds are formed. [4] 2 CrO(O 2) 2 + 7 H 2 O 2 + 6 H + → 2 Cr 3+ + 10 H 2 O + 7 O 2. Stable adducts of the type CrO(O 2) 2 L include those with L = diethyl ether, 1-butanol, ethyl acetate, or amyl acetate. They form by adding a layer of the ...