Search results
Results from the WOW.Com Content Network
The K-factor is the bending capacity of sheet metal, and by extension the forumulae used to calculate this. [1] [2] [3] Mathematically it is an engineering aspect of geometry. [4] Such is its intricacy in precision sheet metal bending [5] (with press brakes in particular) that its proper application in engineering has been termed an art. [4] [5]
The K-factor depends on many variables including the material, the type of bending operation (coining, bottoming, air-bending, etc.) the tools, etc. and is typically between 0.3 and 0.5. The following equation relates the K-factor to the bend allowance: [12] = + /.
K factor (crude oil refining), a system for classifying crude oil; K-factor (fire protection), formula used to calculate the discharge rate from a fire system nozzle; K-factor (metalurgy), formulae used to calculate the bending capacity of sheet metal; K factor (traffic engineering), the proportion of annual average daily traffic occurring in ...
The elastic section modulus is used to calculate a cross-section's resistance to bending within the elastic range, where stress and strain are proportional. The plastic section modulus is used to calculate a cross-section's capacity to resist bending after yielding has occurred across the entire section. It is used for determining the plastic ...
, column effective length factor; This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load. The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect ...
In the absence of a qualifier, the term bending is ambiguous because bending can occur locally in all objects. Therefore, to make the usage of the term more precise, engineers refer to a specific object such as; the bending of rods, [2] the bending of beams, [1] the bending of plates, [3] the bending of shells [2] and so on.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The bending stiffness (EI/L) of a member is represented as the flexural rigidity of the member (product of the modulus of elasticity (E) and the second moment of area (I)) divided by the length (L) of the member. What is needed in the moment distribution method is not the specific values but the ratios of bending stiffnesses between all members.