Search results
Results from the WOW.Com Content Network
In computing, sequential access memory (SAM) is a class of data storage devices that read stored data in a sequence. This is in contrast to random access memory (RAM) where data can be accessed in any order. Sequential access devices are usually a form of magnetic storage or optical storage. [1] [2]
Sequential access is a term describing a group of elements (such as data in a memory array or a disk file or on magnetic-tape data storage) being accessed in a predetermined, ordered sequence. It is the opposite of random access , the ability to access an arbitrary element of a sequence as easily and efficiently as any other at any time.
Random access compared to sequential access. Random access (more precisely and more generally called direct access) is the ability to access an arbitrary element of a sequence in equal time or any datum from a population of addressable elements roughly as easily and efficiently as any other, no matter how many elements may be in the set.
The first practical form of random-access memory was the Williams tube. It stored data as electrically charged spots on the face of a cathode-ray tube. Since the electron beam of the CRT could read and write the spots on the tube in any order, memory was random access.
A scatter memory access pattern combines sequential reads with indexed/random addressing for writes. [26] Compared to gather, It may place less load on a cache hierarchy since a processing element may dispatch writes in a "fire and forget" manner (bypassing a cache altogether), whilst using predictable prefetching (or even DMA) for its source data.
They can store more information and transmit data more quickly than the older technology, called DRAM (dynamic random access memory). HBM chips are commonly used in graphic cards, high-performance ...
Dynamic random-access memory is a form of volatile memory that also requires the ... (especially for non-volatile memory) and in case of sequential access storage ...
PRAM algorithms cannot be parallelized with the combination of CPU and dynamic random-access memory (DRAM) because DRAM does not allow concurrent access to a single bank (not even different addresses in the bank); but they can be implemented in hardware or read/write to the internal static random-access memory (SRAM) blocks of a field-programmable gate array (FPGA), it can be done using a CRCW ...