enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subset - Wikipedia

    en.wikipedia.org/wiki/Subset

    A is a subset of B (denoted ) and, conversely, B is a superset of A (denoted ). In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B.

  3. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A third pair of operators ⊂ and ⊃ are used differently by different authors: some authors use A ⊂ B and B ⊃ A to mean A is any subset of B (and not necessarily a proper subset), [33] [24] while others reserve A ⊂ B and B ⊃ A for cases where A is a proper subset of B. [31] Examples: The set of all humans is a proper subset of the set ...

  4. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    As implied by this definition, a set is a subset of itself. For cases where this possibility is unsuitable or would make sense to be rejected, the term proper subset is defined. A is called a proper subset of B if and only if A is a subset of B, but A is not equal to B. Also, 1, 2, and 3 are members (elements) of the set {1, 2, 3}, but are not ...

  5. Subgroup - Wikipedia

    en.wikipedia.org/wiki/Subgroup

    A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.

  6. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    If A is a subset of B, then one can also say that B is a superset of A, that A is contained in B, or that B contains A. In symbols, A ⊆ B means that A is a subset of B, and B ⊇ A means that B is a superset of A. Some authors use the symbols ⊂ and ⊃ for subsets, and others use these symbols only for proper subsets. For clarity, one can ...

  7. Class (set theory) - Wikipedia

    en.wikipedia.org/wiki/Class_(set_theory)

    The collection of all algebraic structures of a given type will usually be a proper class. Examples include the class of all groups, the class of all vector spaces, and many others. In category theory, a category whose collection of objects forms a proper class (or whose collection of morphisms forms a proper class) is called a large category.

  8. Family of sets - Wikipedia

    en.wikipedia.org/wiki/Family_of_sets

    In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection of subsets of a given set is called a family of subsets of , or a family of sets over .

  9. Partition of a set - Wikipedia

    en.wikipedia.org/wiki/Partition_of_a_set

    In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset. Every equivalence relation on a set defines a partition of this set, and every partition defines an equivalence relation.