Search results
Results from the WOW.Com Content Network
The equation of motion for the particle derived above = + + can be rewritten using the definition of the Schwarzschild radius r s as = [] + + (+) which is equivalent to a particle moving in a one-dimensional effective potential = + (+) The first two terms are well-known classical energies, the first being the attractive Newtonian gravitational ...
Since the motion of a particle under a central force always lies in a plane, the position of the particle can be described by polar coordinates (r, θ 1), the radius and angle of the particle relative to the center of force (Figure 1). Both of these coordinates, r(t) and θ 1 (t), change with time t as the particle moves.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The equation arises not by analyzing the individual positions and momenta of each particle in the fluid but rather by considering a probability distribution for the position and momentum of a typical particle—that is, the probability that the particle occupies a given very small region of space (mathematically the volume element) centered at ...
The problem of two fixed centers conserves energy; in other words, the total energy is a constant of motion.The potential energy is given by =where represents the particle's position, and and are the distances between the particle and the centers of force; and are constants that measure the strength of the first and second forces, respectively.
For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame) ′ =
Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to describe motion in two, three or more dimensions.
In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously. The mass might be a projectile or a satellite. [1] For example, it can be an orbit — the path of a planet, asteroid, or comet as it travels around a central mass.