Search results
Results from the WOW.Com Content Network
In computing, data transformation is the process of converting data from one format or structure into another format or structure. It is a fundamental aspect of most data integration [1] and data management tasks such as data wrangling, data warehousing, data integration and application integration.
Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...
Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines , logistic regression , and artificial neural networks ).
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...
The data transformation may be linear, as in principal component analysis (PCA), but many nonlinear dimensionality reduction techniques also exist. [4] [5] For multidimensional data, tensor representation can be used in dimensionality reduction through multilinear subspace learning. [6]
Orange – A visual programming tool featuring interactive data visualization and methods for statistical data analysis, data mining, and machine learning. Pandas – Python library for data analysis. PAW – FORTRAN/C data analysis framework developed at CERN. R – A programming language and software environment for statistical computing and ...
Data wrangling, sometimes referred to as data munging, is the process of transforming and mapping data from one "raw" data form into another format with the intent of making it more appropriate and valuable for a variety of downstream purposes such as analytics. The goal of data wrangling is to assure quality and useful data.
Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").