enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Herbert Enderton - Wikipedia

    en.wikipedia.org/wiki/Herbert_Enderton

    Herbert Bruce Enderton (April 15, 1936 – October 20, 2010) [1] was an American mathematician. He was a Professor Emeritus of Mathematics at UCLA and a former member of the faculties of Mathematics and of Logic and the Methodology of Science at the University of California, Berkeley .

  3. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.

  4. Axiom of regularity - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_regularity

    Suppose, to the contrary, that there is a function, f, on the natural numbers with f(n+1) an element of f(n) for each n.Define S = {f(n): n a natural number}, the range of f, which can be seen to be a set from the axiom schema of replacement.

  5. List of set theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_set_theory_topics

    Pocket set theory; Positive set theory; S (Boolos 1989) Scott–Potter set theory; Tarski–Grothendieck set theory; Von Neumann–Bernays–Gödel set theory; Zermelo–Fraenkel set theory; Zermelo set theory; Set (mathematics) Set-builder notation; Set-theoretic topology; Simple theorems in the algebra of sets; Subset; Θ (set theory) Tree ...

  6. Category of sets - Wikipedia

    en.wikipedia.org/wiki/Category_of_sets

    Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...

  7. Mathematical logic - Wikipedia

    en.wikipedia.org/wiki/Mathematical_logic

    The method of forcing is employed in set theory, model theory, and recursion theory, as well as in the study of intuitionistic mathematics. The mathematical field of category theory uses many formal axiomatic methods, and includes the study of categorical logic , but category theory is not ordinarily considered a subfield of mathematical logic.

  8. Element (category theory) - Wikipedia

    en.wikipedia.org/wiki/Element_(category_theory)

    In category theory, the concept of an element, or a point, generalizes the more usual set theoretic concept of an element of a set to an object of any category.This idea often allows restating of definitions or properties of morphisms (such as monomorphism or product) given by a universal property in more familiar terms, by stating their relation to elements.

  9. Element (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Element_(mathematics)

    The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set. [5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3.