Search results
Results from the WOW.Com Content Network
Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...
An F-score is a combination of the precision and the recall, providing a single score. There is a one-parameter family of statistics, with parameter β, which determines the relative weights of precision and recall. The traditional or balanced F-score is the harmonic mean of precision and recall:
The F-score combines precision and recall into one number via a choice of weighing, most simply equal weighing, as the balanced F-score . Some metrics come from regression coefficients : the markedness and the informedness , and their geometric mean , the Matthews correlation coefficient .
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
When the true prevalences for the two positive variables are equal as assumed in Fleiss kappa and F-score, that is the number of positive predictions matches the number of positive classes in the dichotomous (two class) case, the different kappa and correlation measure collapse to identity with Youden's J, and recall, precision and F-score are ...
Note that the F1 score depends on which class is defined as the positive class. In the first example above, the F1 score is high because the majority class is defined as the positive class. Inverting the positive and negative classes results in the following confusion matrix: TP = 0, FP = 0; TN = 5, FN = 95. This gives an F1 score = 0%.
A classification model (classifier or diagnosis [7]) is a mapping of instances between certain classes/groups.Because the classifier or diagnosis result can be an arbitrary real value (continuous output), the classifier boundary between classes must be determined by a threshold value (for instance, to determine whether a person has hypertension based on a blood pressure measure).
For an intended output t = ±1 and a classifier score y, the hinge loss of the prediction y is defined as ℓ ( y ) = max ( 0 , 1 − t ⋅ y ) {\displaystyle \ell (y)=\max(0,1-t\cdot y)} Note that y {\displaystyle y} should be the "raw" output of the classifier's decision function, not the predicted class label.