enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abbott-Firestone curve - Wikipedia

    en.wikipedia.org/wiki/Abbott-Firestone_curve

    The Abbott-Firestone curve was first described by Ernest James Abbott and Floyd Firestone in 1933. [ 3 ] [ 4 ] It is useful for understanding the properties of sealing and bearing surfaces. It is commonly used in the engineering and manufacturing of piston cylinder bores of internal combustion engines . [ 5 ]

  3. Gurney equations - Wikipedia

    en.wikipedia.org/wiki/Gurney_equations

    While the imploding cylinder equations are fundamentally similar to the general equation for asymmetrical sandwiches, the geometry involved (volume and area within the explosive's hollow shell, and expanding shell of detonation product gases pushing inwards and out) is more complicated, as the equations demonstrate.

  4. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    The Morison equation is a heuristic formulation of the force fluctuations in an oscillatory flow. The first assumption is that the flow acceleration is more-or-less uniform at the location of the body. For instance, for a vertical cylinder in surface gravity waves this requires that the diameter of the cylinder is much smaller than the wavelength.

  5. Surface of revolution - Wikipedia

    en.wikipedia.org/wiki/Surface_of_revolution

    A portion of the curve x = 2 + cos(z) rotated around the z-axis A torus as a square revolved around an axis parallel to one of its diagonals.. A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). [1]

  6. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    When the inscribing cylinder is tight and has a height =, so that the sphere touches the cylinder at the top and bottom, he showed that both the volume and the surface area of the sphere were two-thirds that of the cylinder. This implies the area of the sphere is equal to the area of the cylinder minus its caps.

  7. Polytropic process - Wikipedia

    en.wikipedia.org/wiki/Polytropic_process

    Under the assumption of ideal gas law, heat and work flows go in the same direction (K < 0), such as in an internal combustion engine during the power stroke, where heat is lost from the hot combustion products, through the cylinder walls, to the cooler surroundings, at the same time as those hot combustion products push on the piston. n = +∞

  8. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    From the foregoing, you can see that the time domain equations are simply scaled forms of the angle domain equations: is unscaled, ′ is scaled by ω, and ″ is scaled by ω². To convert the angle domain equations to time domain, first replace A with ωt , and then scale for angular velocity as follows: multiply x ′ {\displaystyle x'} by ...

  9. Catenoid - Wikipedia

    en.wikipedia.org/wiki/Catenoid

    In geometry, a catenoid is a type of surface, arising by rotating a catenary curve about an axis (a surface of revolution). [1] It is a minimal surface, meaning that it occupies the least area when bounded by a closed space. [2] It was formally described in 1744 by the mathematician Leonhard Euler.