Search results
Results from the WOW.Com Content Network
In population genetics and population ecology, population size (usually denoted N) is a countable quantity representing the number of individual organisms in a population. Population size is directly associated with amount of genetic drift , and is the underlying cause of effects like population bottlenecks and the founder effect . [ 1 ]
Definitions of other symbols: ... = sample size = sample 1 size = sample 2 size ¯ = sample mean ... = hypothesized population mean difference ...
Greek letters (e.g. θ, β) are commonly used to denote unknown parameters (population parameters). [3]A tilde (~) denotes "has the probability distribution of". Placing a hat, or caret (also known as a circumflex), over a true parameter denotes an estimator of it, e.g., ^ is an estimator for .
Mu was derived from the Egyptian hieroglyphic symbol for water, which had been simplified by the Phoenicians and named after their word for water, to become 𐤌 img (mem). Letters that derive from mu include the Roman M and the Cyrillic М, though the lowercase resembles a small Latin U (u). Greek letter mu
The effective population size (N e) is the size of an idealised population that would experience the same rate of genetic drift as the real population. [1] Idealised populations are those following simple one- locus models that comply with assumptions of the neutral theory of molecular evolution .
the population mean or expected value in probability and statistics; a measure in measure theory; micro-, an SI prefix denoting 10 −6 (one millionth) Micrometre or micron (retired in 1967 as a standalone symbol, replaced by "μm" using the standard SI meaning) the coefficient of friction in physics; the service rate in queueing theory
Where is the sample size, = / is the fraction of the sample from the population, () is the (squared) finite population correction (FPC), is the unbiassed sample variance, and (¯) is some estimator of the variance of the mean under the sampling design. The issue with the above formula is that it is extremely rare to be able to directly estimate ...
The third population has a much smaller standard deviation than the other two because its values are all close to 7. These standard deviations have the same units as the data points themselves. If, for instance, the data set {0, 6, 8, 14} represents the ages of a population of four siblings in years, the standard deviation is 5 years.