Search results
Results from the WOW.Com Content Network
The "early", "middle" (DNA replication), and "late" genes (virus structure), roughly represent the time course of gene expression. [74] Bacteriophage genomes can be highly mosaic, i.e. the genome of many phage species appear to be composed of numerous individual modules. These modules may be found in other phage species in different arrangements.
During fd phage assembly, the phage DNA is first packaged into a linear intracellular nucleoprotein complex with many copies of the phage gene 5 replication/assembly protein. The gene 5 protein is then displaced by the gene 8 coat protein as the nascent phage is extruded across the bacterial plasma membrane without killing the bacterial host.
Structure of phage ΦX174 capsid Schematic drawing of a Sinsheimervirus (aka Phix174microvirus) virion. The phi X 174 (or ΦX174) bacteriophage is a single-stranded DNA virus that infects Escherichia coli.
Assembled major coat protein, exploded view. The virion is a flexible filament (worm-like chain) about 6 nm in diameter and 900 nm long.Several thousand copies of a small (50 amino-acid residues) elongated alpha-helical major coat protein subunit (the product of gene 8, or p8) in an overlapping shingle-like array form a hollow cylinder enclosing the circular single-stranded DNA genome.
The 'helper' phage infects the bacterial host by first attaching to the host cell's pilus and then, after attachment, transporting the phage genome into the cytoplasm of the host cell. Inside the cell, the phage genome triggers production of single stranded phagemid DNA in the cytoplasm. This phagemid DNA is then packaged into phage particles.
The phage first adheres to the cell surface with its tail parallel to or leaning at an angle to the cell surface in the pre-infection stage. The tail then firmly stands on the cell surface and extends its fibers horizontally, rendering the phage infection-competent, after which viral DNA is released into the cell through an extensible tube. [21]
Lambda phage is a non-contractile tailed phage, meaning during an infection event it cannot 'force' its DNA through a bacterial cell membrane. It must instead use an existing pathway to invade the host cell, having evolved the tip of its tail to interact with a specific pore to allow entry of its DNA to the hosts.
The phage is covered by a protective protein coat. The T2 phage can quickly turn an E. coli cell into a T2-producing factory that releases phages when the cell ruptures. Experiments conducted in 1952 by Alfred Hershey and Martha Chase demonstrated how the DNA of viruses is injected into the bacterial cells, while most of the viral proteins ...