Search results
Results from the WOW.Com Content Network
In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...
Thus for an incompressible inviscid fluid the specific internal energy is constant along the flow lines, also in a time-dependent flow. The pressure in an incompressible flow acts like a Lagrange multiplier , being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no ...
Mass injection flow (a.k.a. Limbach Flow) refers to inviscid, adiabatic flow through a constant area duct where the effect of mass addition is considered. For this model, the duct area remains constant, the flow is assumed to be steady and one-dimensional, and mass is added within the duct.
So, for constant internal energy the equation reduces to the incompressible-flow form. The constant on the right-hand side is often called the Bernoulli constant and denoted b. For steady inviscid adiabatic flow with no additional sources or sinks of energy, b is constant along any given
In fluid dynamics, Fanno flow (after Italian engineer Gino Girolamo Fanno) is the adiabatic flow through a constant area duct where the effect of friction is considered. [1] Compressibility effects often come into consideration, although the Fanno flow model certainly also applies to incompressible flow. For this model, the duct area remains ...
Couette flow – Model of viscous fluid flow between two surfaces moving relative to each other; Effusive limit; Free molecular flow – Gas flow with a relatively large mean free molecular path; Incompressible flow – Fluid flow in which density remains constant; Inviscid flow – Flow of fluids with zero viscosity (superfluids)
The upstream flow is uniform and has no vorticity. The flow is inviscid, incompressible and has constant mass density ρ. The flow therefore remains without vorticity, or is said to be irrotational, with ∇ × V = 0 everywhere. Being irrotational, there must exist a velocity potential φ: =.
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work.