Search results
Results from the WOW.Com Content Network
where b is the number base (10 for decimal), and p is a prime that does not divide b. (Primes p that give cyclic numbers in base b are called full reptend primes or long primes in base b). For example, the case b = 10, p = 7 gives the cyclic number 142857, and the case b = 12, p = 5 gives the cyclic number 2497.
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
Therefore, the base b expansion of / repeats the digits of the corresponding cyclic number infinitely, as does that of / with rotation of the digits for any a between 1 and p − 1. The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime.
A full reptend prime, full repetend prime, proper prime [7]: 166 or long prime in base b is an odd prime number p such that the Fermat quotient = (where p does not divide b) gives a cyclic number with p − 1 digits.
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
When a parasitic number is multiplied by n, not only it exhibits the cyclic behavior but the permutation is such that the last digit of the parasitic number now becomes the first digit of the multiple. For example, 102564 x 4 = 410256. Note that 102564 is the repeating digits of 4 ⁄ 39 and 410256 the repeating digits of 16 ⁄ 39.
It’s been three weeks since the general election polls closed on Nov. 5, and there are still three races for the U.S. House of Representatives that remain too close to call: two in California ...
142,857 is the natural number following 142,856 and preceding 142,858. It is a Kaprekar number. [1]142857, the six repeating digits of 1 / 7 (0. 142857), is the best-known cyclic number in base 10.