Search results
Results from the WOW.Com Content Network
In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, [1] is an interpolation polynomial for a given set of data points. The Newton polynomial is sometimes called Newton's divided differences interpolation polynomial because the coefficients of the polynomial are calculated using Newton's ...
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial. Neville's algorithm evaluates this polynomial. Neville's algorithm is based on the Newton form of the interpolating polynomial and the recursion relation for the divided differences .
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.
[1] Divided differences is a recursive division process. Given a sequence of data points (,), …, (,), the method calculates the coefficients of the interpolation polynomial of these points in the Newton form.
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Return to step 1 but use the polynomial and the initial guess . These two steps are repeated until all real zeros are found for the polynomial. If the approximated zeros are not precise enough, the obtained values can be used as initial guesses for Newton's method but using the full polynomial rather than the reduced polynomials.