Search results
Results from the WOW.Com Content Network
The Golgi apparatus (/ ˈ ɡ ɒ l dʒ i /), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. [1] Part of the endomembrane system in the cytoplasm, it packages proteins into membrane-bound vesicles inside the cell before the vesicles are sent to their destination.
It is located on the trans face of the Golgi apparatus and is made up of cisternae. The cisternae play a crucial role in the packaging, modification, and transport functions for the cell overall. The proteins and polysaccharides that get processed here within the cisterna will then be sent to their specified locations. [3]
The Golgi apparatus (also known as the Golgi body and the Golgi complex) is composed of separate sacs called cisternae. Its shape is similar to a stack of pancakes. The number of these stacks varies with the specific function of the cell. The Golgi apparatus is used by the cell for further protein modification.
The transitional ER gets its name because it contains ER exit sites. These are areas where the transport vesicles which contain lipids and proteins made in the ER, detach from the ER and start moving to the Golgi apparatus. Specialized cells can have a lot of smooth endoplasmic reticulum and in these cells the smooth ER has many functions. [6]
In neuroscience, Golgi cells are the most abundant inhibitory interneurons found within the granular layer of the cerebellum. [1] Golgi cells can be found in the granular layer at various layers. [2] The Golgi cell is essential for controlling the activity of the granular layer. [3] They were first identified as inhibitory in 1964. [4]
The cells of eukaryotic organisms are elaborately subdivided into functionally-distinct membrane-bound compartments. Some major constituents of eukaryotic cells are: extracellular space, plasma membrane, cytoplasm, nucleus, mitochondria, Golgi apparatus, endoplasmic reticulum (ER), peroxisome, vacuoles, cytoskeleton, nucleoplasm, nucleolus, nuclear matrix and ribosomes.
Intracellular transport between the Golgi apparatus and the endoplasmic reticulum. Intracellular transport is unique to eukaryotic cells because they possess organelles enclosed in membranes that need to be mediated for exchange of cargo to take place. [3]
The Golgi apparatus, which participates in glycosylation and transport of proteins and lipids in the secretory pathway, consists of a series of stacked cisternae (flattened membrane sacs). Interactions between the Golgi and microtubules are thought to be important for the reorganization of the Golgi after it fragments during mitosis.