Search results
Results from the WOW.Com Content Network
An inductive argument affirms, not that a certain matter of fact is so, but that relative to certain evidence there is a probability in its favour. The validity of the induction, relative to the original evidence, is not upset, therefore, if, as a fact, the truth turns out to be otherwise.
This category is for inductive fallacies, or faulty generalizations, arguments that improperly move from specific instances to general rules. Pages in category "Inductive fallacies" The following 21 pages are in this category, out of 21 total.
Fallacies are usually divided into formal and informal fallacies. Formal fallacies are expressed in a formal language and usually belong to deductive reasoning. Their fault lies in the logical form of the argument, i.e. that it does not follow a valid rule of inference. [98] [99] A well-known formal fallacy is affirming the consequent.
However, when used in the inductive method, which implies the conclusions can not be proven with certainty, [12] this argument can be considered a strong inductive argument and therefore not fallacious. If a person has a credible authority i.e. is an expert in the field in question, it is more likely that their assessments would be correct ...
Inductive reasoning is any of various methods of reasoning in which broad generalizations or principles are derived from a body of observations. [1] [2] This article is concerned with the inductive reasoning other than deductive reasoning (such as mathematical induction), where the conclusion of a deductive argument is certain given the premises are correct; in contrast, the truth of the ...
Mathematical fallacies are typically crafted and exhibited for educational purposes, usually taking the form of spurious proofs of obvious contradictions. A formal fallacy is contrasted with an informal fallacy which may have a valid logical form and yet be unsound because one or more premises are false. A formal fallacy, however, may have a ...
Nos. 12-3176, 12-3644 IN THE UNITED STATES COURT OF APPEALS FOR THE SECOND CIRCUIT CHRISTOPHER HEDGES, et al., Plaintiffs-Appellees, v. BARACK OBAMA, individually and as
Logical Fallacies, Literacy Education Online; Informal Fallacies, Texas State University page on informal fallacies; Stephen's Guide to the Logical Fallacies (mirror) Visualization: Rhetological Fallacies, Information is Beautiful; Master List of Logical Fallacies, University of Texas at El Paso; Fallacies, Internet Encyclopedia of Philosophy