enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confidence distribution - Wikipedia

    en.wikipedia.org/wiki/Confidence_Distribution

    Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.

  3. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    This probability distribution highlights some different confidence intervals. Informally, in frequentist statistics , a confidence interval ( CI ) is an interval which is expected to typically contain the parameter being estimated.

  4. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  5. CDF-based nonparametric confidence interval - Wikipedia

    en.wikipedia.org/wiki/CDF-based_nonparametric...

    In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known ...

  6. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr(X = 0) = 0.05 and hence (1−p) n = .05 so n ln(1–p) = ln .05 ≈ −2

  7. Founders of statistics - Wikipedia

    en.wikipedia.org/wiki/Founders_of_statistics

    Introduced terms "confidence" and "likelihood" (before Neyman and Fisher). While largely a frequentist, Peirce's possible world semantics introduced the "propensity" theory of probability. See the historical books of Stephen Stigler: Edgeworth, Francis Ysidro: Irish: 1845: 1926: Revived exponential families (Laplace transforms) in statistics.

  8. Coverage probability - Wikipedia

    en.wikipedia.org/wiki/Coverage_probability

    In these hypothetical repetitions, independent data sets following the same probability distribution as the actual data are considered, and a confidence interval is computed from each of these data sets; see Neyman construction. The coverage probability is the fraction of these computed confidence intervals that include the desired but ...

  9. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    In most such problems, if the standard deviation of the errors were known, a normal distribution would be used instead of the t distribution. Confidence intervals and hypothesis tests are two statistical procedures in which the quantiles of the sampling distribution of a particular statistic (e.g. the standard score) are required.