Search results
Results from the WOW.Com Content Network
If the extraterrestrial solar radiation is 1,367 watts per square meter (the value when the Earth–Sun distance is 1 astronomical unit), then the direct sunlight at Earth's surface when the Sun is at the zenith is about 1,050 W/m 2, but the total amount (direct and indirect from the atmosphere) hitting the ground is around 1,120 W/m 2. [6]
The density of the corona generally decreases with distance from the Sun, which causes radio waves to refract toward the radial direction. [44] [45] When solar radio emission enters Earth's ionosphere, refraction may also severely distort the source's apparent location depending on the viewing angle and ionospheric conditions. [46]
Irradiance in space is a function of distance from the Sun, the solar cycle, and cross-cycle changes. [2] Irradiance on the Earth's surface additionally depends on the tilt of the measuring surface, the height of the Sun above the horizon, and atmospheric conditions. [3] Solar irradiance affects plant metabolism and animal behavior. [4]
This is because the distance between Earth and the Sun is not fixed (it varies between 0.983 289 8912 and 1.016 710 3335 au) and, when Earth is closer to the Sun , the Sun's gravitational field is stronger and Earth is moving faster along its orbital path. As the metre is defined in terms of the second and the speed of light is constant for all ...
Diagram showing displacement of the Sun's image at sunrise and sunset Comparison of inferior and superior mirages due to differing air refractive indices, n. Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. [1]
One astronomical unit (about 150 million kilometres; 93 million miles) is defined as the mean distance between the centers of the Sun and the Earth. The instantaneous distance varies by about ± 2.5 million kilometres (1.6 million miles) as Earth moves from perihelion around 3 January to aphelion around 4 July. [36]
Evolution of the solar luminosity, radius and effective temperature compared to the present-day Sun. After Ribas (2009) [3] The uncrewed SOHO spacecraft was used to measure the radius of the Sun by timing transits of Mercury across the surface during 2003 and 2006. The result was a measured radius of 696,342 ± 65 kilometres (432,687 ± 40 miles).
The Sun over Phang Nga Bay in Thailand (), at 7:00 a.m. local time on a March morning. The position of the Sun in the sky is a function of both the time and the geographic location of observation on Earth's surface.