enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each equivalence class. The most common choice is the initial ordinal in that class. This is usually taken as the definition of cardinal number in axiomatic set theory.

  3. Set cover problem - Wikipedia

    en.wikipedia.org/wiki/Set_cover_problem

    The task is then to find a minimum cardinality subset of left-vertices that has a non-trivial intersection with each of the right-vertices, which is precisely the hitting set problem. In the field of computational geometry, a hitting set for a collection of geometrical objects is also called a stabbing set or piercing set. [5]

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  5. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    A set A is said to have cardinality smaller than or equal to the cardinality of a set B, if there exists a one-to-one function (an injection) from A into B. This is denoted |A| ≤ |B|. If A and B are not equinumerous, then the cardinality of A is said to be strictly smaller than the cardinality of B. This is denoted |A| < |B|.

  6. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    The notion of cardinality, as now understood, was formulated by Georg Cantor, the originator of set theory, in 1874–1884. Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three.

  7. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    The Stirling number {} is the number of ways to partition a set of cardinality n into exactly k nonempty subsets. Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is ...

  8. König's theorem (set theory) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(set_theory)

    In set theory, KÅ‘nig's theorem states that if the axiom of choice holds, I is a set, and are cardinal numbers for every i in I, and < for every i in I, then <. The sum here is the cardinality of the disjoint union of the sets m i, and the product is the cardinality of the Cartesian product.

  9. Element (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Element_(mathematics)

    The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set. [5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3.