Search results
Results from the WOW.Com Content Network
Infrasound arrays at monitoring station in Qaanaaq, Greenland.. Infrasound, sometimes referred to as low frequency sound or subsonic, describes sound waves with a frequency below the lower limit of human audibility (generally 20 Hz, as defined by the ANSI/ASA S1.1-2013 standard). [1]
A 1973 report cites a university study of fifty cases of people complaining about a "low throbbing background noise" that others were unable to hear. The sound, always peaking between 30 and 40 Hz (hertz), was found to only be heard during cool weather with a light breeze, and often early in the morning.
Infrasound is sound at frequencies lower than the low frequency end of human hearing threshold at 20 Hz. It is known, however, that humans can perceive sounds below this frequency at very high pressure levels. [1]
Most rooms have their fundamental resonances in the 20 Hz to 200 Hz region, each frequency being related to one or more of the room's dimensions or a divisor thereof. These resonances affect the low-frequency low-mid-frequency response of a sound system in the room and are one of the biggest obstacles to accurate sound reproduction.
In the 2010s, tactile sound transducers have evolved to include higher frequencies and produce higher fidelity. The human tactile frequency range is from 1 Hz, very low frequency such as earthquakes, up to 5 kHz in some hearing impaired individuals. For most individuals 2 to 3 kHz is the upper threshold for tactile reception.
Low frequency (LF) is the ITU designation [1] for radio frequencies (RF) in the range of 30–300 kHz. Since its wavelengths range from 10–1 km, respectively, it is also known as the kilometre band or kilometre waves. LF radio waves exhibit low signal attenuation, making them suitable for long
Bass traps are acoustic energy absorbers which are designed to damp low-frequency sound energy with the goal of attaining a flatter low-frequency (LF) room response by reducing LF resonances in rooms. They are commonly used in recording studios, mastering rooms, home theatres and other rooms built to provide a critical listening environment ...
The name was given because the sound slowly decreases in frequency over about seven minutes. It was recorded using an autonomous hydrophone array. [8] The sound has been picked up several times each year since 1997. [9] One of the hypotheses on the origin of the sound is moving ice in Antarctica. Sound spectrograms of vibrations caused by ...