Search results
Results from the WOW.Com Content Network
In mathematics, a self-similar object is exactly or approximately similar to a part of itself (i.e., the whole has the same shape as one or more of the parts). Many objects in the real world, such as coastlines , are statistically self-similar: parts of them show the same statistical properties at many scales. [ 2 ]
In addition, pattern calculus supports uniform access to the internal structure of arguments, be they pairs or lists or trees. Also, it allows patterns to be passed as arguments and returned as results. Uniform access is illustrated by a pattern-matching function size that computes the size of an arbitrary data structure.
The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...
Here is a brief overview of what Xcas is able to do: [9] [10] Xcas has the ability of a scientific calculator that provides show input and writes pretty print; Xcas works also as a spreadsheet; [11]
In a covering map the Euler–Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The z → z n mapping shows this as a local pattern: if we exclude 0, looking at 0 < |z| < 1 say, we have (from the homotopy point of view) the circle mapped to itself by the n-th power map (Euler–Poincaré characteristic 0), but ...
In mathematics, a pairing function is a process to uniquely encode two natural numbers into a single natural number. Any pairing function can be used in set theory to prove that integers and rational numbers have the same cardinality as natural numbers.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The snake lemma is a tool used in mathematics, particularly homological algebra, to construct long exact sequences.The snake lemma is valid in every abelian category and is a crucial tool in homological algebra and its applications, for instance in algebraic topology.