enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Lorentz_group

    Since every proper, orthochronous Lorentz transformation can be written as a product of a rotation (specified by 3 real parameters) and a boost (also specified by 3 real parameters), it takes 6 real parameters to specify an arbitrary proper orthochronous Lorentz transformation. This is one way to understand why the restricted Lorentz group is ...

  3. Representation theory of the Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    Many of the representations, both finite-dimensional and infinite-dimensional, are important in theoretical physics. Representations appear in the description of fields in classical field theory, most importantly the electromagnetic field, and of particles in relativistic quantum mechanics, as well as of both particles and quantum fields in quantum field theory and of various objects in string ...

  4. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    Lorentz generators can be added together, or multiplied by real numbers, to obtain more Lorentz generators. In other words, the set of all Lorentz generators V = { ζ ⋅ K + θ ⋅ J } {\displaystyle V=\{{\boldsymbol {\zeta }}\cdot \mathbf {K} +{\boldsymbol {\theta }}\cdot \mathbf {J} \}} together with the operations of ordinary matrix ...

  5. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    The theory of special relativity plays an important role in the modern theory of classical electromagnetism.It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another.

  6. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    The prime examples of such four-vectors are the four-position and four-momentum of a particle, and for fields the electromagnetic tensor and stress–energy tensor. The fact that these objects transform according to the Lorentz transformation is what mathematically defines them as vectors and tensors; see tensor for a definition.

  7. Symmetry in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_quantum_mechanics

    Lorentz transformations can be parametrized by rapidity φ for a boost in the direction of a three-dimensional unit vector ^ = (,,), and a rotation angle θ about a three-dimensional unit vector ^ = (,,) defining an axis, so ^ = (,,) and ^ = (,,) are together six parameters of the Lorentz group (three for rotations and three for boosts). The ...

  8. History of Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/History_of_Lorentz...

    While length contraction was a real physical effect for Lorentz, he considered the time transformation only as a heuristic working hypothesis and a mathematical stipulation. In 1895, Lorentz further elaborated on his theory and introduced the "theorem of corresponding states".

  9. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.