Search results
Results from the WOW.Com Content Network
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry , a circular segment or disk segment (symbol: ⌓ ) is a region of a disk [ 1 ] which is "cut off" from the rest of the disk by a straight line.
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror ...
The sagitta (also known as the versine) is a line segment drawn perpendicular to a chord, between the midpoint of that chord and the arc of the circle. Given the length y of a chord and the length x of the sagitta, the Pythagorean theorem can be used to calculate the radius of the unique circle that will fit around the two lines: r = y 2 8 x ...
The area bounded by one spiral rotation and a line is 1/3 that of the circle having a radius equal to the line segment length; Use of the method of exhaustion also led to the successful evaluation of an infinite geometric series (for the first time);
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...