Search results
Results from the WOW.Com Content Network
Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...
A decision tree or a classification tree is a tree in which each internal (non-leaf) node is labeled with an input feature. The arcs coming from a node labeled with an input feature are labeled with each of the possible values of the target feature or the arc leads to a subordinate decision node on a different input feature.
Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.
A greedy algorithm is used to construct a Huffman tree during Huffman coding where it finds an optimal solution. In decision tree learning, greedy algorithms are commonly used, however they are not guaranteed to find the optimal solution. One popular such algorithm is the ID3 algorithm for decision tree construction.
The left figure below shows a binary decision tree (the reduction rules are not applied), and a truth table, each representing the function (,,).In the tree on the left, the value of the function can be determined for a given variable assignment by following a path down the graph to a terminal.
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.
A fast-and-frugal tree is a classification or a decision tree that has m+1 exits, with one exit for each of the first m −1 cues and two exits for the last cue. Mathematically, fast-and-frugal trees can be viewed as lexicographic heuristics or as linear classification models with non-compensatory weights and a threshold.
An alternating decision tree (ADTree) is a machine learning method for classification. It generalizes decision trees and has connections to boosting . An ADTree consists of an alternation of decision nodes, which specify a predicate condition, and prediction nodes, which contain a single number.