Search results
Results from the WOW.Com Content Network
A homogeneous relation over a set is a binary relation over and itself, i.e. it is a subset of the Cartesian product . [14] [32] [33] It is also simply called a (binary) relation over .
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1)-matrix is a matrix with entries from the Boolean domain B = {0, 1}. Such a matrix can be used to represent a binary relation between a pair of finite sets. It is an important tool in combinatorial mathematics and theoretical computer science.
A symmetric relation is a type of binary relation. Formally, a binary relation R over a set X is symmetric if: [1], (), where the notation aRb means that (a, b) ∈ R. An example is the relation "is equal to", because if a = b is true then b = a is also true.
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S.In the calculus of relations, the composition of relations is called relative multiplication, [1] and its result is called a relative product.
In mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy}. Conversely, R is called right total if Y equals the range {y : there is an x with xRy}. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation.
Orders are special binary relations. Suppose that P is a set and that ≤ is a relation on P ('relation on a set' is taken to mean 'relation amongst its inhabitants', i.e. ≤ is a subset of the cartesian product P x P). Then ≤ is a partial order if it is reflexive, antisymmetric, and transitive, that is, if for all a, b and c in P, we have that:
Properties of binary relations (4 C, 22 P) Pages in category "Binary relations" The following 26 pages are in this category, out of 26 total.