Search results
Results from the WOW.Com Content Network
Hydrogen peroxide is a chemical compound with the formula H 2 O 2.In its pure form, it is a very pale blue [5] liquid that is slightly more viscous than water.It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use.
Fenton's reagent is a solution of hydrogen peroxide (H 2 O 2) and an iron catalyst (typically iron(II) sulfate, FeSO 4). [1] It is used to oxidize contaminants or waste water as part of an advanced oxidation process. Fenton's reagent can be used to destroy organic compounds such as trichloroethylene and tetrachloroethylene (perchloroethylene).
The main finding of Haber and Weiss was that hydrogen peroxide (H 2 O 2) is decomposed by a chain reaction. [2] The Haber–Weiss reaction chain proceeds by successive steps: (i) initiation, (ii) propagation and (iii) termination. The chain is initiated by the Fenton reaction: Fe 2+ + H 2 O 2 → Fe 3+ + HO – + HO • (step 1: initiation)
This method starts with a solution of hydrogen peroxide and sulfuric acid. To this a solution containing potassium iodide, sodium thiosulfate, and starch is added. There are two reactions occurring simultaneously in the solution. In the first, slow reaction, iodine is produced: H 2 O 2 + 2 I − + 2 H + → I 2 + 2 H 2 O
Elephant's toothpaste is a foamy substance caused by the quick decomposition of hydrogen peroxide (H 2 O 2) using potassium iodide (KI) or yeast and warm water as a catalyst. [1] How rapidly the reaction proceeds will depend on the concentration of hydrogen peroxide.
The hydrogen peroxide is then extracted with water and in a second step separated by fractional distillation from the water. The hydrogen peroxide accumulates as sump product. The anthraquinone acts as a catalyst, the overall reaction equation is therefore: +
Many industrial peroxides are produced using hydrogen peroxide. Reactions with aldehydes and ketones yield a series of compounds depending on conditions. Specific reactions include addition of hydrogen peroxide across the C=O double bond: R 2 C=O + H 2 O 2 → R 2 C(OH)OOH. In some cases, these hydroperoxides convert to give cyclic diperoxides:
The initial aqueous solution contains hydrogen peroxide, an iodate, divalent manganese (Mn 2+) as catalyst, a strong chemically unreactive acid (sulphuric acid (H 2 SO 4) or perchloric acid (HClO 4) are good), and an organic compound with an active ("enolic") hydrogen atom attached to carbon which will slowly reduce free iodine (I 2) to iodide (I −).