enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. Ackermann's formula - Wikipedia

    en.wikipedia.org/wiki/Ackermann's_Formula

    In control theory, Ackermann's formula is a control system design method for solving the pole allocation problem for invariant-time systems by Jürgen Ackermann. [1] One of the primary problems in control system design is the creation of controllers that will change the dynamics of a system by changing the eigenvalues of the matrix representing the dynamics of the closed-loop system. [2]

  4. State space (computer science) - Wikipedia

    en.wikipedia.org/wiki/State_space_(computer_science)

    If the size of the state space is finite, calculating the size of the state space is a combinatorial problem. [4] For example, in the Eight queens puzzle, the state space can be calculated by counting all possible ways to place 8 pieces on an 8x8 chessboard. This is the same as choosing 8 positions without replacement from a set of 64, or

  5. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  6. Multidimensional system - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_system

    A state-space model is a representation of a system in which the effect of all "prior" input values is contained by a state vector. In the case of an m-d system, each dimension has a state vector that contains the effect of prior inputs relative to that dimension. The collection of all such dimensional state vectors at a point constitutes the ...

  7. Bond graph - Wikipedia

    en.wikipedia.org/wiki/Bond_graph

    State-space representation is especially powerful as it allows complex multi-order differential system to be solved as a system of first-order equations instead. The general form of the state equation is ˙ = + where () is a column matrix of the state variables, or the unknowns of the system.

  8. State (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/State_(functional_analysis)

    By Gelfand representation, every commutative C*-algebra A is of the form C 0 (X) for some locally compact Hausdorff X. In this case, S(A) consists of positive Radon measures on X, and the pure states are the evaluation functionals on X. More generally, the GNS construction shows that every state is, after choosing a suitable representation, a ...

  9. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The state of an isolated physical system is represented, at a fixed time , by a state vector | belonging to a Hilbert space called the state space. Separability is a mathematically convenient hypothesis, with the physical interpretation that the state is uniquely determined by countably many observations.