enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Singular spectrum analysis - Wikipedia

    en.wikipedia.org/wiki/Singular_spectrum_analysis

    Singular spectrum analysis applied to a time-series F, with reconstructed components grouped into trend, oscillations, and noise. In time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method.

  3. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Simple or fully formed statistical models to describe the likely outcome of the time series in the immediate future, given knowledge of the most recent outcomes (forecasting). Forecasting on time series is usually done using automated statistical software packages and programming languages, such as Julia, Python, R, SAS, SPSS and many others.

  4. Innovation (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Innovation_(signal_processing)

    In time series analysis (or forecasting) — as conducted in statistics, signal processing, and many other fields — the innovation is the difference between the observed value of a variable at time t and the optimal forecast of that value based on information available prior to time t. If the forecasting method is working correctly ...

  5. Directional symmetry (time series) - Wikipedia

    en.wikipedia.org/wiki/Directional_symmetry_(time...

    Tay, Francis EH, and Lijuan Cao. "Application of support vector machines in financial time series forecasting." Omega 29.4 (2001): 309–317. Xiong, Tao, Yukun Bao, and Zhongyi Hu. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices." Energy Economics 40 (2013): 405–415.

  6. Bayesian structural time series - Wikipedia

    en.wikipedia.org/.../Bayesian_structural_time_series

    Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used ...

  7. Forecasting - Wikipedia

    en.wikipedia.org/wiki/Forecasting

    This forecasting method is only suitable for time series data. [17] Using the naïve approach, forecasts are produced that are equal to the last observed value. This method works quite well for economic and financial time series, which often have patterns that are difficult to reliably and accurately predict. [17]

  8. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  9. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.