Search results
Results from the WOW.Com Content Network
In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
The function F is some nonlinear function, such as a polynomial. F can be a neural network , a wavelet network , a sigmoid network and so on. To test for non-linearity in a time series, the BDS test (Brock-Dechert-Scheinkman test) developed for econometrics can be used.
The newer nonlinear modelling approaches include non-parametric methods, such as feedforward neural networks, kernel regression, multivariate splines, etc., which do not require a priori knowledge of the nonlinearities in the relations. Thus the nonlinear modelling can utilize production data or experimental results while taking into account ...
Thus, for example, MARS models can incorporate logistic regression to predict probabilities. Non-linear regression is used when the underlying form of the function is known and regression is used only to estimate the parameters of that function. MARS, on the other hand, estimates the functions themselves, albeit with severe constraints on the ...
Nonlinear mixed-effects models are a special case of regression analysis for which a range of different software solutions are available. The statistical properties of nonlinear mixed-effects models make direct estimation by a BLUE estimator impossible. Nonlinear mixed effects models are therefore estimated according to Maximum Likelihood ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, a run sequence plot to check for significant shifts in location, scale, start-up effects and outliers. A lag plot can be used to verify the residuals are independent. The outliers also appear in the lag plot, and a histogram and normal probability plot to check for skewness or other non-normality in the residuals.