Search results
Results from the WOW.Com Content Network
Original and simplified example circuit. While there are many ways to minimize a circuit, this is an example that minimizes (or simplifies) a Boolean function. The Boolean function carried out by the circuit is directly related to the algebraic expression from which the function is implemented. [7]
This expression says that the output function f will be 1 for the minterms ,,,, and (denoted by the 'm' term) and that we don't care about the output for and combinations (denoted by the 'd' term). The summation symbol ∑ {\displaystyle \sum } denotes the logical sum (logical OR, or disjunction) of all the terms being summed over.
Examples of don't-care terms are the binary values 1010 through 1111 (10 through 15 in decimal) for a function that takes a binary-coded decimal (BCD) value, because a BCD value never takes on such values (so called pseudo-tetrades); in the pictures, the circuit computing the lower left bar of a 7-segment display can be minimized to a b + a c by an appropriate choice of circuit outputs for ...
Boolean function; Boolean-valued function; Boolean-valued model; Boolean satisfiability problem; Boolean differential calculus; Indicator function (also called the characteristic function, but that term is used in probability theory for a different concept) Espresso heuristic logic minimizer; Logical matrix; Logical value; Stone duality; Stone ...
The POS expression gives a complement of the function (if F is the function so its complement will be F'). [10] Karnaugh maps can also be used to simplify logic expressions in software design. Boolean conditions, as used for example in conditional statements, can get very complicated, which makes the code difficult to read and to maintain. Once ...
The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.
In computer science, a Boolean expression is an expression used in programming languages that produces a Boolean value when evaluated. A Boolean value is either true or false.A Boolean expression may be composed of a combination of the Boolean constants True/False or Yes/No, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions.
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [1] [2] Alternative names are switching function, used especially in older computer science literature, [3] [4] and truth function (or logical function), used in logic.