Search results
Results from the WOW.Com Content Network
In physics, Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck radiation law , which describes the spectral brightness or intensity of black-body radiation ...
Comparison of Wien’s curve and the Planck curve. Wien's approximation (also sometimes called Wien's law or the Wien distribution law) is a law of physics used to describe the spectrum of thermal radiation (frequently called the blackbody function). This law was first derived by Wilhelm Wien in 1896.
Wien's law or Wien law may refer to: . Wien approximation, an equation used to describe the short-wavelength (high frequency) spectrum of thermal radiation; Wien's displacement law, an equation that describes the relationship between the temperature of an object and the peak wavelength or frequency of the emitted light
A consequence of Wien's displacement law is that the wavelength at which the intensity per unit wavelength of the radiation produced by a black body has a local maximum or peak, , is a function only of the temperature: =, where the constant b, known as Wien's displacement constant, is equal to + 2.897 771 955 × 10 −3 m K. [31]
Wien's displacement law, and the fact that the frequency is inversely proportional to the wavelength, indicates that the peak frequency f max is proportional to the absolute temperature T of the black body. The photosphere of the sun, at a temperature of approximately 6000 K, emits radiation principally in the (human-)visible portion of the ...
Wilhelm Carl Werner Otto Fritz Franz Wien (German: [ˈvɪlhɛlm ˈviːn] ⓘ; 13 January 1864 – 30 August 1928) was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any temperature from the emission at any one reference temperature.
For different versions of the law, the proportionality constant differs—so, for a given temperature, there is no unique characteristic wavelength or frequency. The chart plots the peak of the Planck luminosity curve when it is plotted on a per wavelength basis ("peak wavelength"), on a per frequency basis ("peak frequency"), or on a per log ...
Photons given off by a body in thermal equilibrium have a black-body spectrum with an energy density proportional to the fourth power of the temperature, as described by the Stefan–Boltzmann law. Wien's law states that the wavelength of maximum emission from a black body is inversely proportional to its temperature. Equivalently, the ...