Search results
Results from the WOW.Com Content Network
A highly practical example of latent variable models in machine learning is the topic modeling which is a statistical model for generating the words (observed variables) in the document based on the topic (latent variable) of the document. In the topic modeling, the words in the document are generated according to different statistical ...
A Michigan-LCS evolves at the level of individual classifiers whereas a Pittsburgh-LCS uses populations of classifier-sets. Initially, classifiers were only binary, but now include real, neural net, or S-expression types. Fitness is typically determined with either a strength or accuracy based reinforcement learning or supervised learning approach.
For example, 12.380 becomes the integer 12380 by multiplying by 1000. This must of course be taken into account in genotype-phenotype mapping for evaluation and result presentation. A common form is a chromosome consisting of a list or an array of integer or real values.
U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [2] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation.
An RBM is an undirected, generative energy-based model with a "visible" input layer and a hidden layer and connections between but not within layers. This composition leads to a fast, layer-by-layer unsupervised training procedure, where contrastive divergence is applied to each sub-network in turn, starting from the "lowest" pair of layers ...
For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns.
The examples are usually administered several times as iterations. The training utilizes competitive learning. When a training example is fed to the network, its Euclidean distance to all weight vectors is computed. The neuron whose weight vector is most similar to the input is called the best matching unit (BMU). The weights of the BMU and ...
Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.