Search results
Results from the WOW.Com Content Network
A regular icosahedron is topologically identical to a cuboctahedron with its 6 square faces bisected on diagonals with pyritohedral symmetry. The icosahedra with pyritohedral symmetry constitute an infinite family of polyhedra which include the cuboctahedron, regular icosahedron, Jessen's icosahedron, and double cover octahedron. Cyclical ...
An icosahedron can be inscribed in an octahedron by placing its 12 vertices on the 12 edges of the octahedron such that they divide each edge into its two golden sections. Because the golden sections are unequal, there are five different ways to do this consistently, so five disjoint icosahedra can be inscribed in each octahedron. [18]
Alternatively, if you expand each of five cubes by moving the faces away from the origin the right amount and rotating each of the five 72° around so they are equidistant from each other, without changing the orientation or size of the faces, and patch the pentagonal and triangular holes in the result, you get a rhombicosidodecahedron ...
Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.
A rhombic icosahedron. The rhombic icosahedron is a polyhedron shaped like an oblate sphere.Its 20 faces are congruent golden rhombi; [1] 3, 4, or 5 faces meet at each vertex. It has 5 faces (green on top figure) meeting at each of its 2 poles; these 2 vertices lie on its axis of 5-fold symmetry, which is perpendicular to 5 axes of 2-fold symmetry through the midpoints of opposite equatorial ...
It can be seen as the compound of an icosahedron and dodecahedron. It is one of four compounds constructed from a Platonic solid or Kepler-Poinsot solid , and its dual . It has icosahedral symmetry ( I h ) and the same vertex arrangement as a rhombic triacontahedron .
Fuller (1975) used these 6 great circles, along with 15 and 10 others in two other polyhedra to define his 31 great circles of the spherical icosahedron. [ 6 ] The long radius (center to vertex) of the icosidodecahedron is in the golden ratio to its edge length; thus its radius is φ if its edge length is 1, and its edge length is 1 / φ ...
The truncated icosahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. [5] It has the same symmetry as the regular icosahedron, the icosahedral symmetry, and it also has the property of vertex-transitivity.