Search results
Results from the WOW.Com Content Network
Cardinal and Ordinal Numbers is a book on transfinite numbers, by Polish mathematician Wacław Sierpiński. It was published in 1958 by Państwowe Wydawnictwo Naukowe , as volume 34 of the series Monografie Matematyczne of the Institute of Mathematics of the Polish Academy of Sciences .
Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set [9] (e.g., "the third man from the left" or "the twenty-seventh day of January").
So ordinal numbers exist and are essentially unique. Ordinal numbers are distinct from cardinal numbers, which measure the size of sets. Although the distinction between ordinals and cardinals is not always apparent on finite sets (one can go from one to the other just by counting labels), they are very different in the infinite case, where ...
Download as PDF; Printable version; ... Pages in category "Cardinal numbers" ... Cardinal and Ordinal Numbers; Cardinal assignment;
Download as PDF; Printable version; ... Cardinal numbers (1 C, 43 P) Pages in category "Ordinal numbers"
Ordinal indicator – Character(s) following an ordinal number (used when writing ordinal numbers, such as a super-script) Ordinal number – Generalization of "n-th" to infinite cases (the related, but more formal and abstract, usage in mathematics) Ordinal data, in statistics; Ordinal date – Date written as number of days since first day of ...
Ordinal numbers: Finite and infinite numbers used to describe the order type of well-ordered sets. Cardinal numbers : Finite and infinite numbers used to describe the cardinalities of sets . Infinitesimals : These are smaller than any positive real number, but are nonetheless greater than zero.
Von Neumann cardinal assignment implies that the cardinal number of a finite set is the common ordinal number of all possible well-orderings of that set, and cardinal and ordinal arithmetic (addition, multiplication, power, proper subtraction) then give the same answers for finite numbers. However, they differ for infinite numbers.