enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear strength (soil) - Wikipedia

    en.wikipedia.org/wiki/Shear_strength_(soil)

    Typical stress strain curve for a drained dilatant soil. Shear strength is a term used in soil mechanics to describe the magnitude of the shear stress that a soil can sustain. . The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contac

  3. Cohesion (geology) - Wikipedia

    en.wikipedia.org/wiki/Cohesion_(geology)

    Cohesion is the component of shear strength of a rock or soil that is independent of interparticle friction. In soils, true cohesion is caused by following: Electrostatic forces in stiff overconsolidated clays (which may be lost through weathering) Cementing by Fe 2 O 3, Ca CO 3, Na Cl, etc. There can also be apparent cohesion. This is caused by:

  4. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Typical values of cohesion and angle of internal friction [ edit ] Cohesion (alternatively called the cohesive strength ) and friction angle values for rocks and some common soils are listed in the tables below.

  5. Soil mechanics - Wikipedia

    en.wikipedia.org/wiki/Soil_mechanics

    The angle of internal friction is thus closely related to the maximum stable slope angle, often called the angle of repose. But in addition to friction, soil derives significant shear resistance from interlocking of grains. If the grains are densely packed, the grains tend to spread apart from each other as they are subject to shear strain.

  6. Direct shear test - Wikipedia

    en.wikipedia.org/wiki/Direct_shear_test

    A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil [1] [2] or rock [2] material, or of discontinuities in soil or rock masses. [2] [3] The U.S. and U.K. standards defining how the test should be performed are ASTM D 3080, AASHTO T236 and BS 1377-7:1990, respectively.

  7. Lateral earth pressure - Wikipedia

    en.wikipedia.org/wiki/Lateral_earth_pressure

    An example of lateral earth pressure overturning a retaining wall. The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and ...

  8. Angle of repose - Wikipedia

    en.wikipedia.org/wiki/Angle_of_repose

    Angle of repose of a heap of sand Sandpile from the Matemateca collection. The angle of repose, or critical angle of repose, [1] of a granular material is the steepest angle of descent or dip relative to the horizontal plane on which the material can be piled without slumping. At this angle, the material on the slope face is on the verge of ...

  9. Dilatancy (granular material) - Wikipedia

    en.wikipedia.org/wiki/Dilatancy_(granular_material)

    The relationship between dilation and internal friction is typically illustrated by the sawtooth model of dilatancy where the angle of dilation is analogous to the angle made by the teeth to the horizontal. Such a model can be used to infer that the observed friction angle is equal to the dilation angle plus the friction angle for zero dilation.