Ad
related to: how to solve continuity problems with variables in statistics and probabilityeducator.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Before the ready availability of statistical software having the ability to evaluate probability distribution functions accurately, continuity corrections played an important role in the practical application of statistical tests in which the test statistic has a discrete distribution: it had a special importance for manual calculations.
In probability theory, a continuous stochastic process is a type of stochastic process that may be said to be "continuous" as a function of its "time" or index parameter. Continuity is a nice property for (the sample paths of) a process to have, since it implies that they are well-behaved in some sense, and, therefore, much easier to analyze.
In probability theory and statistics, a continuous-time stochastic process, or a continuous-space-time stochastic process is a stochastic process for which the index variable takes a continuous set of values, as contrasted with a discrete-time process for which the index variable takes only distinct values.
Continuous probability distribution: Sometimes this term is used to mean a probability distribution whose cumulative distribution function (c.d.f.) is (simply) continuous. Sometimes it has a less inclusive meaning: a distribution whose c.d.f. is absolutely continuous with respect to Lebesgue measure. This less inclusive sense is equivalent to ...
A stochastic process is defined as a collection of random variables defined on a common probability space (,,), where is a sample space, is a -algebra, and is a probability measure; and the random variables, indexed by some set , all take values in the same mathematical space , which must be measurable with respect to some -algebra .
In probability theory, the continuous mapping theorem states that continuous functions preserve limits even if their arguments are sequences of random variables. A continuous function, in Heine's definition, is such a function that maps convergent sequences into convergent sequences: if x n → x then g(x n) → g(x).
That is, Q is absolutely continuous with respect to P if the support of Q is a subset of the support of P, except in cases where this is false, including, e.g., a measure that concentrates on an open set, because its support is a closed set and it assigns measure zero to the boundary, and so another measure may concentrate on the boundary and ...
Let (Ω, Σ, P) be a probability space.Let X : I × Ω → S be a stochastic process, where the index set I and state space S are both topological spaces.Then the process X is called sample-continuous (or almost surely continuous, or simply continuous) if the map X(ω) : I → S is continuous as a function of topological spaces for P-almost all ω in Ω.
Ad
related to: how to solve continuity problems with variables in statistics and probabilityeducator.com has been visited by 10K+ users in the past month