Search results
Results from the WOW.Com Content Network
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
Middle Riemann sum of x ↦ x 3 over [0, 2] using 4 subintervals For the midpoint rule, the function is approximated by its values at the midpoints of the subintervals. This gives f ( a + Δ x /2) for the first subinterval, f ( a + 3Δ x /2) for the next one, and so on until f ( b − Δ x /2) .
In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation , named after Niels Henrik Abel who introduced it in 1826.
Summation methods include Cesàro summation, generalized Cesàro (,) summation, Abel summation, and Borel summation, in order of applicability to increasingly divergent series. These methods are all based on sequence transformations of the original series of terms or of its sequence of partial sums.
Some alternative definitions lead to the same function. For instance, e x can be defined as (+). Or e x can be defined as f x (1), where f x : R → B is the solution to the differential equation df x / dt (t) = x f x (t), with initial condition f x (0) = 1; it follows that f x (t) = e tx for every t in R.
In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula c q ( n ) = ∑ 1 ≤ a ≤ q ( a , q ) = 1 e 2 π i a q n , {\displaystyle c_{q}(n)=\sum _{1\leq a\leq q \atop (a,q)=1}e^{2\pi i{\tfrac {a}{q}}n},}
OSLO (Reuters) -A tram derailed and crashed into a store in central Oslo on Tuesday, injuring the driver and at least three other people, Norwegian police said. The blue tram of the Oslo transport ...
In the mathematics of convergent and divergent series, Euler summation is a summation method. That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original ...