Search results
Results from the WOW.Com Content Network
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9 Acetic acid: 1.04 117.9 3.14 16.6 –3.90 K b [1] K f [2] Acetone: 0.78 56.2 1.67 –94.8 K b [3] Benzene: 0.87 80.1 2.65 5.5 –5.12 K b & K f [2] Bromobenzene: 1.49 156.0 6. ...
The high reactivity of thiophene toward sulfonation is the basis for the separation of thiophene from benzene, which are difficult to separate by distillation due to their similar boiling points (4 °C difference at ambient pressure). Like benzene, thiophene forms an azeotrope with ethanol.
This is a list of the various reported boiling points for the elements, with recommended values to be used elsewhere on Wikipedia. For broader coverage of this topic, see Boiling point . Boiling points, Master List format
Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH 3 CO) 2 O. Commonly abbreviated Ac 2 O , it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis .
If the two layers are heated together, the system of layers will boil at 53.3 °C, which is lower than either the boiling point of chloroform (61.2 °C) or the boiling point of water (100 °C). The vapor will consist of 97.0% chloroform and 3.0% water regardless of how much of each liquid layer is present provided both layers are indeed present.
The worldwide production of acetic anhydride is a major application, and uses approximately 25% to 30% of the global production of acetic acid. The main process involves dehydration of acetic acid to give ketene at 700–750 °C. Ketene is thereafter reacted with acetic acid to obtain the anhydride: [50] CH 3 CO 2 H → CH 2 =C=O + H 2 O
Thiophene-2-acetic acid is the organosulfur compound with the formula HO 2 CCH 2 C 4 H 3 S. Together with thiophene-3-acetic acid, it is one of two isomeric thiophene acetic acids. Preparation and use