Search results
Results from the WOW.Com Content Network
When a line of curvature has a local extremum of the same principal curvature then the curve has a ridge point. These ridge points form curves on the surface called ridges. The ridge curves pass through the umbilics. For the star pattern either 3 or 1 ridge line pass through the umbilic, for the monstar and lemon only one ridge passes through. [3]
The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...
Euler's spiral is a type of superspiral that has the property of a monotonic curvature function. [4] The Euler spiral has applications to diffraction computations. They are also widely used in railway and highway engineering to design transition curves between straight and curved sections of railways or roads.
Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...
The simplest type of parametric surfaces is given by the graphs of functions of two variables: = (,), (,) = (,, (,)). A rational surface is a surface that admits parameterizations by a rational function. A rational surface is an algebraic surface. Given an algebraic surface, it is commonly easier to decide if it is rational than to compute its ...
They measure how the surface bends by different amounts in different directions from that point. We represent the surface by the implicit function theorem as the graph of a function, f, of two variables, in such a way that the point p is a critical point, that is, the gradient of f vanishes (this can always be attained by a suitable rigid motion).
Alternatively, the sectional curvature can be characterized by the circumference of small circles. Let be a two-dimensional plane in .Let () for sufficiently small > denote the image under the exponential map at of the unit circle in , and let () denote the length of ().
Supporting lines and tangent lines are not the same thing, [11] but for convex curves, every tangent line is a supporting line. [8] At a point of a curve where a tangent line exists, there can only be one supporting line, the tangent line. [12] Therefore, a smooth curve is convex if it lies on one side of each of its tangent lines.