Search results
Results from the WOW.Com Content Network
Sulfuric(IV) acid (United Kingdom spelling: sulphuric(IV) acid), also known as sulfurous (UK: sulphurous) acid and thionic acid, [citation needed] is the chemical compound with the formula H 2 SO 3. Raman spectra of solutions of sulfur dioxide in water show only signals due to the SO 2 molecule and the bisulfite ion, HSO − 3 . [ 2 ]
The sulfur trioxide is absorbed into 97–98% H 2 SO 4 to form oleum (H 2 S 2 O 7), also known as fuming sulfuric acid or pyrosulphuric acid. The oleum is then diluted with water to form concentrated sulfuric acid. H 2 SO 4 + SO 3 → H 2 S 2 O 7 H 2 S 2 O 7 + H 2 O → 2 H 2 SO 4
For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution.
The lead chamber process for sulfuric acid production was abandoned, partly because it could not produce sulfur trioxide or concentrated sulfuric acid directly due to corrosion of the lead, and absorption of NO 2 gas. Until this process was made obsolete by the contact process, oleum had to be obtained through indirect methods.
Acid strength is the tendency of an acid, symbolised by the chemical formula, to dissociate into a proton, +, and an anion, .The dissociation or ionization of a strong acid in solution is effectively complete, except in its most concentrated solutions.
Molecular models of the different molecules active in Piranha solution: peroxysulfuric acid (H 2 SO 5) and hydrogen peroxide (H 2 O 2). Piranha solution, also known as piranha etch, is a mixture of sulfuric acid (H 2 SO 4) and hydrogen peroxide (H 2 O 2). The resulting mixture is used to clean organic residues off substrates, for example ...
The decomposition products can include sulfur, sulfur dioxide, hydrogen sulfide, polysulfanes, sulfuric acid and polythionates, depending on the reaction conditions. [6] Anhydrous methods of producing the acid were developed by Max Schmidt: [6] [7] H 2 S + SO 3 → H 2 S 2 O 3 Na 2 S 2 O 3 + 2 HCl → 2 NaCl + H 2 S 2 O 3 HSO 3 Cl + H 2 S → ...
Typical conditions involve heating the aromatic compound with sulfuric acid: [2] C 6 H 6 + H 2 SO 4 → C 6 H 5 SO 3 H + H 2 O. Sulfur trioxide or its protonated derivative is the actual electrophile in this electrophilic aromatic substitution. To drive the equilibrium, dehydrating agents such as thionyl chloride can be added: [2]