Search results
Results from the WOW.Com Content Network
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will cause an excess of products, and the system will try to counteract this by increasing the reverse reaction and pushing the ...
Equilibrium constant, a quantity characterizing a chemical equilibrium in a chemical reaction; Partition equilibrium, a type of chromatography that is typically used in GC; Quasistatic equilibrium, the quasi-balanced state of a thermodynamic system near to equilibrium in some sense or degree; Schlenk equilibrium, a chemical equilibrium named ...
In chemistry, Le Chatelier's principle (pronounced UK: / l ə ʃ æ ˈ t ɛ l j eɪ / or US: / ˈ ʃ ɑː t əl j eɪ /) [1] is a principle used to predict the effect of a change in conditions on chemical equilibrium. [2] Other names include Chatelier's principle, Braun–Le Chatelier principle, Le Chatelier–Braun principle or the equilibrium ...
In a reversible reaction, chemical equilibrium is reached when the rates of the forward and reverse reactions are equal (the principle of dynamic equilibrium) and the concentrations of the reactants and products no longer change. This is demonstrated by, for example, the Haber–Bosch process for combining nitrogen and hydrogen to produce ammonia.
An example where Henry's law is at play is the depth-dependent dissolution of oxygen and nitrogen in the blood of underwater divers that changes during decompression, going to decompression sickness. An everyday example is carbonated soft drinks , which contain dissolved carbon dioxide.
Chemical equilibrium is a dynamic state in which forward and backward reactions proceed at such rates that the macroscopic composition of the mixture is constant. Thus, equilibrium sign ⇌ symbolizes the fact that reactions occur in both forward ⇀ {\displaystyle \rightharpoonup } and backward ↽ {\displaystyle \leftharpoondown } directions.
Physical chemistry, in contrast to chemical physics, is predominantly (but not always) a supra-molecular science, as the majority of the principles on which it was founded relate to the bulk rather than the molecular or atomic structure alone (for example, chemical equilibrium and colloids).
Equilibrium is attained when the sum of chemical potentials of the species on the left-hand side of the equilibrium expression is equal to the sum of chemical potentials of the species on the right-hand side. At the same time, the rates of forward and backward reactions are equal to each other.