Search results
Results from the WOW.Com Content Network
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
In statistics, an outlier is a data point that differs significantly from other observations. [ 1 ] [ 2 ] An outlier may be due to a variability in the measurement, an indication of novel data, or it may be the result of experimental error; the latter are sometimes excluded from the data set .
However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.
Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.
The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of location. The problem is that the arithmetic mean is very sensitive to the inclusion of any outliers; in statistical terminology, the arithmetic mean is not robust.
In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. [1] The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread. It is defined as the difference between the 75th and 25th percentiles of the data.
In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950 [1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.