Search results
Results from the WOW.Com Content Network
Work of breathing is increased by increased density of the breathing gas, artifacts of the breathing apparatus, and hydrostatic pressure variations due to posture in the water. The underwater environment also affects sensory input, which can impact on safety and the ability to function effectively at depth. [2]
h is the depth of the puddle in centimeters or meters. γ is the surface tension of the liquid in dynes per centimeter or newtons per meter. g is the acceleration due to gravity and is equal to 980 cm/s 2 or 9.8 m/s 2; ρ is the density of the liquid in grams per cubic centimeter or kilograms per cubic meter
The force per unit volume on a fluid in a gravitational field is equal to ρg where ρ is the density of the fluid, and g is the gravitational acceleration. On Earth, additional height of fresh water adds a static pressure of about 9.8 kPa per meter (0.098 bar/m) or 0.433 psi per foot of water column height.
g is the acceleration due to gravity; T is the absolute temperature; k is Boltzmann constant; M is the molecular mass of the gas; p is the pressure; h is the height; This is known as the barometric formula, and may be derived from assuming the pressure is hydrostatic.
The beams update many times per second (typically 0.1–50 Hz depending on water depth), allowing faster boat speed while maintaining 100% coverage of the seafloor. Attitude sensors allow for the correction of the boat's roll and pitch on the ocean surface, and a gyrocompass provides accurate heading information to correct for vessel yaw .
A depth gauge can also be based on light: The brightness decreases with depth, but depends on the weather (e.g. whether it is sunny or cloudy) and the time of the day. Also the color depends on the water depth. [7] [8] In water, light attenuates for each wavelength, differently.
Stream power is the rate of energy dissipation against the bed and banks of a river or stream per unit downstream length. It is given by the equation: = where Ω is the stream power, ρ is the density of water (1000 kg/m 3), g is acceleration due to gravity (9.8 m/s 2), Q is discharge (m 3 /s), and S is the channel slope.
Anatomical variations are mainly caused by genetics and may vary considerably between different populations. The rate of variation considerably differs between single organs, particularly in muscles. [2] Knowledge of anatomical variations is important in order to distinguish them from pathological conditions.